

Digital Twins for Aviation Fleets: Introduction

Perceived value of Digital Twins in Aviation Lessons learnt from recent applications Engine 10101 And maybe why not so simple... Aviation Interfaces to DAFNI Engine 10101 R Airspace / airport infrastructure modelling / prediction Understanding and optimising technical-social impacts of future disruptive technologies in aviation Urban air mobility scenario modelling

Grid interface for electric storage

Author contact: a.r.mills@sheffield.ac.uk © 2021 The University of Sheffield

. . .

Aviation Digital Twins

- Rebranding 'modelling' isn't going to bring development time / costs down!
- However trusted models + data is powerful
 - 'As built' models
 - Manufactured components tolerance→ virtual optimised integrations, individual deterioration mechanisms, ...
 - 'As operated' models
 - Actual usage \rightarrow optimised design mods, better predictions, ...
 - Actual performance \rightarrow anomaly detection, 'biological age', ...
 - Actual operations → asset maintenance decisions, airspace management

https://www.rolls-royce.com/media/ourstories/discover/2019/how-digital-twin-technology can-enhance-aviation.aspx

Since 2004 BAE Systems has used its Lightning Analysis Facility (LAF) to simulate and test the response of the Typhoon to lightning strikes. (no real tests)

Remote Asset Management

Source: Palmer, T. (2015), Rolls-Royce plc

Today:

Data features (for faults, performance, etc) based on nominal relationships, thresholds set on fleet behaviour, asset performance measures inaccurate, large data sets are a burden Future systems will:

Calculate true asset performance

Model mechanical properties for as built system

Incorporate all measurements and asset management

Allow control and operational adjustments to be modelled

© 2021 The University of Sheffield

Solution Concept – Adaptive data acquisition

Challenges

- Accuracy in simulation at all times (target ~1%)
- Plant complexity, variability, noise
- Constraints bandwidth, compute, on-board memory
- Separations of degradation and faults
- Data completeness nonconnectivity, 'dirty data',
- Security and regulations (e.g. Export Control)
- Trust, transparency, translation of solution (verifiable with available data)

Solution Attributes

- Embedded / edge deep models using TensorFlow Lite
- Fleet and multi-scale aspects ightarrow transfer learning
- Data selection \rightarrow Active learning

© 2021 The University of Sheffield

Implementation Overview

The University Of. Sheffield.

- Novel and uncertain data
- Returned to ground in higher volumes than conventional data streams.
- May be visualised, automatically processed or stored as labelled archive

Alert

- Digital twins should be 'as-built' or 'as-operated' simulation models.
- Digital twins require data assimilation often under constraints
 - 'Closed-loop' data acquisition demonstrated to TRL-4
 - Currently scheduled for flight trial \rightarrow TRL-6
- Models will be used for what-if assessments and optimisation
- Acknowledgements
 - Adam Hartwell (on-board deep learning)
 - Felipe Montana (off-board triage of data)
 - Will Jacobs (system design)
- Papers
 - Montana F., Hartwell A., Jacobs W., Mills A. (2021). Through-life Learning with Digital Twins in Resource-constrained Systems and Fleets. Unpublished.
 - Hartwell A., Montana F., Jacobs W., Mills A. (2021). Data-Driven, Real-time, Embedded Anomaly Detection for Time Series Gas Turbine Data Using Convolutional Neural Networks. Unpublished.

