

Integration of the MATSim transport model into the DAFNI platform

J. Raimbault^{1,2,3,*}

*j.raimbault@ucl.ac.uk

¹Center for Advanced Spatial Analysis, University College London ²UPS CNRS 3611 Complex Systems Institute Paris ³UMR CNRS 8504 Géographie-cités

> DAFNI Roadshow - UTSG 24th March 2021

MATSim model: heterogenous data and integration of many sub-models

Source: [Balmer et al., 2009]

Raimbault (UCL)

Land-use transport models as a progressive complexification through coupling of detailed sub-models

Transport model		T1 No public transport no modal split	T2 Public transport no logit 24 h	T3 Public transport logit peak hour	T4 Multi- modal activity -based	
LI	None	/		→	→ I	
L2	Activity and judgement			*		
L3	No market-based land allocation	\square		\$	+	
L4	Logit allocation with price signals		\square		+	
L5	Market-based land-use model					
L6	Activity-based land-use model				**	

	Speed of change									
Models	Very slow		Slow		Fast		Immediate			
	Networks	Land use	Work- places	Housing	Employ- ment	Popula- tion	Goods transport	Travel		
BOYCE	+				+	+		+		
CUFM		+	+	+	+	+				
DELTA/START	+	+	+	+	+	+	+	+		
HUDS				+	+	+				
IMREL	+	+	+	+	+	+		+		
IRPUD	+	+	+	+	+	+		+		
ITLUP	+	+			+	+		+		
KIM	+				+	+	+	+		
LILT	+	+	+	+	+	+		+		
MEPLAN	+	+	+	+	+	+	+	+		
METROSIM	+	+	+	+	+	+		+		
MUSSA	+	+			+	+		+		
POLIS		+			+	+		+		
RURBAN		+			+	+		+		
STASA	+	+	+	+	+	+	+	+		
TRANUS	+	+	+	+	+	+	+	+		
URBANSIM		+	+	+	+	+		+		

Source: [Wegener and Fürst, 2004]

Build modular urban transportation models from the bottom-up using scientific workflow systems, open source sub-models and open data

- ightarrow Sub-models coupled into the workflow, can be easily replaced
- ightarrow Reproducibility and transparency
- \rightarrow Easier transferability of model application
- ightarrow Application of model validation methods

Implementation: *integration of the MATSim transport model into the DAFNI platform*

Case study: Construct a modular four-step multimodal transportation model using open source projects and data

Integrated models:

- MATSim model (MATSim Community) for the transportation system https://www.matsim.org/ [Horni et al., 2016]
- SPENSER model (University of Leeds) for the synthetic population https://github.com/nismod/microsimulation
- QUANT model (CASA, University College London) for spatial interactions to generate home-work plans http://quant.casa.ucl.ac.uk/ [Milton and Roumpani, 2019] (specific scala implementation)
- spatialdata library (OpenMOLE community) for data processing https://github.com/openmole/spatialdata [Raimbault et al., 2020]

Data:

Generic for any Functional Urban Area (GHSL [Florczyk et al., 2019]) in the UK: NOMIS census, OrdnanceSurvey roads, Transport National Dataset

Implementation

Currently integrated into the DAFNI platform:

- synthetic SPENSER population with uniform job locations
- QUANT model to generate home-work commuting flows
- network and plans prepared into MATSim xml files and fed into a one-mode MATSim (multimodal version still tested locally)
- models integrated as Docker containers

DAFNI workflow for coupled model

Visualization within DAFNI

Simulation results: travel distances

UCL

Raimbault (UCL)

MATSim transport modelling

Daily travel patterns

UC

Role of stochasticity

FUA: Taunton

Validation: towards spatial sensitivity analysis

Raimbault, J., Cottineau, C., Le Texier, M., Le Nechet, F., Reuillon, R. (2019). Space Matters: Extending Sensitivity Analysis to Initial Spatial Conditions in Geosimulation Models. *Journal of Artificial Societies and Social Simulation*, 22(4).

Raimbault, J., Perret, J., & Reuillon, R. (2020). A scala library for spatial sensitivity analysis. GISRUK 2020 Proceedings, 32.

Raimbault, J., Perret, J. (2019). Generating urban morphologies at large scales. In *Artificial Life Conference Proceedings* (pp. 179-186).

Raimbault (UCL)

OpenMOLE model exploration open source software [Reuillon et al., 2013]

Enables seamlessly (i) model embedding; (ii) access to HPC resources; (iii) exploration and optimization algorithms

https://openmole.org/

Towards advanced validation experiments

OpenMOLE integrates methods for: sensitivity analysis, spatial sensitivity analysis, design of experiments, calibration, diversity search, inverse problems, model reduction.

Integration of OpenMOLE into DAFNI

Raimbault (UCL)

UCL

Developments

 \rightarrow Integration of multi-modal MATSim, calibration of mode choice parameters

 \rightarrow Visualisation of MATSim agents dynamics (MATSim visu features not open)

 \rightarrow Dynamical strong coupling of QUANT and SPENSER to combine population projections with the transport model

Applications

 \rightarrow Validation of sub-models and integrated models using advanced model validation methods

 \rightarrow Use MATSim outputs to quantify effective densities in public transport: potential exposure indicators in the COVID-19 context

 \rightarrow Impact of policies and interventions on transport system dynamics and potential contaminations

UCL

 \rightarrow Open, reproducible and validated urban models as elementary bricks towards larger integrated models

 \rightarrow Central role of the DAFNI platform: workflow system to couple models, data platform, integrated access to computational resources

Open repositories

https://github.com/JusteRaimbault/UrbanDynamics for workflows https://github.com/openmole/spatialdata for data processing

Workflow engines

```
DAFNI: https://dafni.ac.uk/
```

OpenMOLE: https://openmole.org

References I

UCL

Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., and Nagel, K. (2009).
Matsim-t: Architecture and simulation times.
In *Multi-agent systems for traffic and transportation engineering*, pages 57–78. IGI Global.

- Florczyk, A. J., Corbane, C., Ehrlich, D., Freire, S., Kemper, T., Maffenini, L., Melchiorri, M., Pesaresi, M., Politis, P., Schiavina, M., et al. (2019).
 Ghsl data package 2019.
 Luxembourg, EUR, 29788(10.2760):290498.
- Horni, A., Nagel, K., and Axhausen, K. W. (2016). *The multi-agent transport simulation MATSim.* Ubiquity Press.

Milton, R. and Roumpani, F. (2019). Accelerating urban modelling algorithms with artificial intelligence. In *Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management*, volume 1, pages 105–116. INSTICC.

Raimbault, J., Perret, J., and Reuillon, R. (2020). A scala library for spatial sensitivity analysis. *Proceedings of GISRUK 2020*.

Reuillon, R., Leclaire, M., and Rey-Coyrehourcq, S. (2013). Openmole, a workflow engine specifically tailored for the distributed exploration of simulation models.

Future Generation Computer Systems, 29(8):1981–1990.

Wegener, M. and Fürst, F. (2004). Land-use transport interaction: State of the art. *Available at SSRN 1434678.*