

Digital Twins and Urban Observatories: How DAFNI is supporting the National Digital Twin Agenda

Daniel Coca Department of Automatic Control & Systems Engineering The University of Sheffield

www.dafni.ac.uk

DAFNI Overview

- What is a Digital Twin?
- DAFNI and Urban Observatories role in the National Digital Twin Programme
- Sheffield Urban Flow Observatory
- DAFNI-enabled Sheffield Traffic Digital Twin

DAFNI Digital Twin Definitions

A digital twin is a virtual representation of a physical object or system across its lifecycle, using real-time data to enable understanding, learning and reasoning. *IBM*

A digital twin is a virtual representation of a physical product or process, used to understand and predict the physical counterpart's performance characteristics. *Siemens*

Digital twins are realistic digital representations of physical things. They unlock value by enabling improved insights that support better decisions, leading to better outcomes in the physical world.

Cambridge Centre for Digital Build Britain

A digital twin is a mirror image of a physical process that is articulated alongside the process in question, usually matching exactly the operation of the physical process which takes place in real-time.

Michael Batty, UCL

www.dafni.ac.uk

DAFNI Digital Twin System

www.dafni.ac.uk

/ UK Research and Innovation

DAFNI National Digital Twin Programme

Led by the Centre for Digital Built Britain (CDBB) in partnership with the Department for Business, Energy and Industrial Strategy (BEIS)

Programme Objectives

- Enable a National Digital Twin Ecosystem of connected digital twins of the UK national infrastructure
- Deliver an Information Management Framework Secure resilient data sharing
- Align a Digital Framework Task Group Coordination among the key players

DAFNI DAFNI's Role in the NDT

DAFNI - Urban Observatories Integration

DAFNI

Our Vision

To create a urban sensing and analytics platform to measure, describe, analyse, optimize and plan the metabolism of the city - the flows of materials, energy, people, information and the processes by which modern cities transform these resource flows in order to sustain their function.

DAFNI

Sensor Platforms

Data Analytics Dashboard

FNI

DAFNI Urban Digital Twin Platform

Data Curation, Missing Data Recovery and Fusion

Real-Time Data Analytics

Multi-Scale, Spatio-Temporal Modelling of Flows and Processes

Model-Based Decision Support Tools

Data Assimilation

Urban Metabolism Assessment

84

DAFNI Sheffield Traffic Digital Twin

Traffic data

- 640 sensors that report traffic flow (cars/min)
- Time resolution: 5 minutes
- Data harvested since Sept. 2019

DAFNI platform provides computational power to perform machine learning inference for all the traffic sensors in real-time

DAFNI Traffic Forecasting Model

Machine learning model development

- Missing data imputation, outlier detection, smoothing
- Data transformation
- Feature (input) selection
- Model selection and validation

ML model deployment in DAFNI

DAFNI Traffic Forecast Performance

30 Mean Relative Error over 24-hours [SCC]1AYC1:O1 [SCC]1QHD1 25 [SCC]1LQC1:B1 [SCC]1TGD7 Traffic flow (cars/minute) 0 5 00 Sensor id 5 min ahead 15 min ahead [SCC]1PHD3 [SCC]1JLD1 [SCC]1AYC1:01 15.2% 7.4% [SCC]1QHD1 13.6% 28% [SCC]1LQC1:B1 13.9% 24.5% [SCC]1TGD7 28.1% 13.2% [SCC]1PHD3 20.8% 11.2% 0 15 20 5 10 Time hr

Thank you

