

Climate Change Committee

Integrated modelling needs for climate change risk assessment

Kathryn Brown Climate Change Committee

Our changing climate Observed and projected changes in UK hazards due to climate change

	Observ ed change	Expected change by mid-century	Global warming of 2°C above preindustrial levels by 2100	Global warming of 4°C abov e preindustrial lev els by 2100
Av erage annual UK temperatures	0.6°C from 1981 - 2000	~1.3°C from 1981 - 2000	~1.5°C from 1981 - 2000	~3°C from 1981–2000
Hot summer occurrence – '2018 summer'	10 – 25% chance each year	~ 50% chance each year	~50% >>50% chance each year	
Av erage summer rainfall	0 no significant long-term trend~10% drier than over 1981 - 2000~15% drier than over 1981 - 2000		~15% drier than over 1981 - 2000	~30% drier than over 1981 - 2000
Av erage winter rainfall	0 no significant long-term trend	~5% wetterthan over 1981 - 2000	~5% wetterthan over 1981 - 2000	~20% wetterthan over 1981 - 2000
Heav y rainfall	0 some increase, but not significant long-term trend	~10% increase	∼20% increase	~ 50% increase
Sea lev el rise	~6.5cm above 1981 – 2000	10 – 30cm above 1981 – 2000	25 – 45cm above 1981 – 2000	55 – 80cm above 1981–2000 UKC

Our changing climate Change in maximum summer air temperature from 1981-2000 baseline

Source UKCP18 projections

Our changing climate Change in number of people at flood risk from present day

Source Sayers et al. 2020

Our changing climate Projections of future water availability

Source HR Wallingford 2020

Issue 1: UK climate change risk assessments – sectoral or spatial? Spatial assessments cost more – so to date we have taken a sectoral approach in the UK

N1 Risks to terrestrial species and habitats	N2 Risks to terrestrial species annd habitats from pests, pathogens and INNS	N4 Risk to soils from changing conditions, including seasonal aridity and wetness	N5 Risks to natural carbon stores and sequestration from changing conditions	N6 Risks to and opportunities for agricultural and forestry productivity	N7 Risks to agriculture from pests, pathogens and INNS	NB Risks to forestry from pests, pathogens and INNS	N11 Risks to freshwater species and habitats
N12 Risks to freshwater species and habitats from pests, pathogens and INNS	N14 Risks to marine species, habitats and fisheries	NLG Risks to marine species and habitats from pests, pathogens and INNS	N17 Risks and opportunities to coastal species and habitats	11 Risks to infrastructure networks from cascading failures	12 Risks to infrastructure services from river and surface water flooding	IS Risks to transport networks from slope and embankment failure	18 Risks to public water supplies from reduced water availability
112 Risks to transport from high and low temperatures, high winds, lightning	H1 Risks to health and wellbeing from high temperatures	HB Risks to people, communities and buildings from flooding	H4 Risks to people, communities and buildings from sea level rise	H6 Risks and opportunities from summer and winter household energy demand	H8 Risks to health from vector- borne diseases	H11 Risks to cultural heritage	H12 Risks to health and social care delivery
H18 Risks to education and prison services	B1 Risks to business sites from flooding	B2 Risks to business locations and infrastructure from coastal change	B6 Risks to business from disruption to supply chains and distribution networks	ID1 Risks to UK food availability, safety, and quality from climate change overseas	IDS Risks to international law and governance from climate change overseas that will impact the UK	ID4 Risks to the UK from international violent conflict resulting from climate change	ID9 Risk to UK public health from climate change overseas
ID7 Risks from climate change on international trade routes	ID10 Risk multiplication from the interactions and cascades of named risks across systems and geographies	N3 Opportunities from new species colonisations in terrestrial habitats	N9 Opportunities for agricultural and forestry productivity from new species	N10 Risks to aquifers and agricultural land from sea level rise, saltwater intrusion	N15 Opportunities for marine species, habitats and fisheries	N18 Risks and opportunities from climate change to landscape character	13 Risks to infrastructure services from coastal flooding and erosion
14 Risks to bridges and pipelines from flooding and erosion	IG Risks to hydroelectric generation from low or high river flows	17 Risks to subterranean and surface infrastructure from subsidence	19 Risks to energy generation from reduced water availability	110 Risks to energy from high and low temperatures, high winds, lightning	I13 Risks to digital from high and low temperatures, high winds, lightning	H2 Opportunities for health and wellbeing from higher temperatures	H5 Risks to building fabric
H7 Risks to health and wellbeing from changes in air quality	H9 Risks to food safety and food security	H10 Risks to health from poor water quality and household water supply interruptions	B3 Risks to businesses from water scarcity	BS Risks to business from reduced employee productivity – infrastructure disruption and higher temperatures	B7 Opportunities for business - changing demand for goods and services	N13 Opportunities to marine species, habitats and fisheries (SCA)	111 Risks to offshore infrastructure from storms and high waves (SCA)
B4 Risks to finance, investment, insurance, access to capital (SCA)	ID8 Risk to the UK finance sector from climate change overseas (SCA)	ID2 Opportunities for UK food availability and exports (WB)	ID3 Risks to the UK from climate-related international human mobility (WB)	ID6 Opportunities (including arctic ice melt) on international trade routes (WB)	More Action Needed	Further Investigation	Sustain Current Action, Watching Brief

Other national assessments take a spatial approach US National assessment looks at BOTH sectors and regions

https://nca2018.globalchange.gov/

Issue 2: Inconsistent underlying evidence

The CCRA uses a method designed to cope with inconsistent evidence – but consistent assumptions on climate and socioeconomics would be better!

Issue 3: 'Stop-start' nature of risk assessments

CCC Letter to all Research Council Chief Execs, 2016:

"The review conducted has identified very significant gaps in scientific understanding of

climate risks to the UK that are not being addressed by the research community.

In many instances the evidence required for the CCRA would best be delivered by a

more coordinated approach to modelling climate risks at a national scale".

Data requirements for CCRAs Basis so far, and gaps

- CCRA2 and CCRA3 were assembled through existing literature with a small amount of new modelling, tendered out to consultants (CCRA water and flooding projections)
- Model and method IP was owned by the consultants; results IP was owned by the CCC
- In order to move away from this, model frameworks need to be open source and simple enough for non-technical civil servants to access and generate results
- This could be achieved through a user interface (as is the case for UKCP18) or through generating a large number of pre-run outputs using different assumptions, agreed with the customer in advance. The former is likely to be better than the latter.

- Can DAFNI help to bridge this divide?
 - Ability to search and run outputs for sectors vs geographies; different timeframes; aggregation of multiple risks?
 - An accessible user interface (i.e. one that is usable to someone with no model or GIS background)?
 - Using metrics that match up with policy-relevant datasets that are already in use?

www.theccc.org.uk

@theCCCUK

