
The Flood People Simulator

Introduction
The Flood People Simulator is a simulator for dynamic modelling of interactions between

flooding and people in crowded areas. It can be used to simulate flood events in 3D spaces

such as sports stadiums, shopping centres and residential areas. The Flood People

Simulator is developed in FlameGPU (Flexible Large Scale Agent Modelling Environment for

the GPU) which is a framework used to build agent-based models which can use GPUs for

their processing power.

Both FlameGPU and Flood People Simulator are explained in more technical detail below.

Overview of FlameGPU

FlameGPU is an extension to a relatively well-known tool in the modelling community called

FLAME. Models created in Flame are created based on a computational model called finite

state machines. By unifying the way that models are created, we ensure that programs can

be generated and they scale and run well for High Performance Computing (HPC).

FlameGPU works in much the same way as FLAME and allows users to specify their models

using XML format. As well as the XML file, users must include at least one function file which

is a source code file containing the agent functions for the model.

Users wanting to use FlameGPU to produce their model must first fork the repository from

GitHub and then add their model on top of the code.

Overview of Flood People Simulator
The Flood People Simulator model itself is built on top of the FlameGPU package. It has

been configured to take in two XML files. One XML describes the 3D environment in which

the flood event will take place. This takes the form of a series of x, y, z coordinates which

build up a 3D space. The documentation for the Flood People Simulator suggests using

FlameGPU’s FGPUGridNavPlanEditor (https://github.com/RSE-

Sheffield/FGPUGridNavPlanEditor) to put this file together. The second XML file describes a

set of parameters that affect the metadata of the flood (i.e. the flow rate of the flood, the

speed and number of pedestrians, whether sandbags are available).

The simulation itself can be run in either “visualisation” or “console” mode. Either mode will

simulate the flood step by step and, at each stage, will output the number of survivors as

well as other information about the flood itself.

Analysis of Software
Both FlameGPU and the Flood People-Simulator are written mainly in C and C++ and are

built using makefiles and configured using XML files. They are also both open source and

available at the following links:

• FlameGPU – https://github.com/FLAMEGPU/FLAMEGPU

• Flood People Simulator – https://github.com/SahebSh/FLAMEGPU

As mentioned above, once built using the makefile, The Flood-People Simulator can be run

in either visualisation or console mode. For DAFNI purposes, we will be running in console

mode as the model will not be running on an operating system which has a GUI to display

the visualisation.

https://github.com/FLAMEGPU/FLAMEGPU
https://github.com/SahebSh/FLAMEGPU

Input Data
The Flood People Simulator doesn’t have any dependencies on external datafiles to run. It

only requires the ‘initial_state.xml’ file which outlines what the 3D space looks like and the

‘map.xml’ file which contains all of the configurable metadata about the flood itself.

Configuration
There are many configurable parameters for the model. The main ones are listed in the table

below.

Parameter Description Format Unit Value ranges

freeze_trapped_p
eds_on

(de)activate
immobility of
pedestrians
(Shirvani et al.
2020)

integer none 1: Activate
0: Deactivate

ped_roughness_e
ffect_on

(de)activate the
effect of
pedestrians’
bodies on bed
roughness.

integer none 1: Activate
0: Deactivate

sandbagging_on (de)activate the
intervention case
prior to the start of
flooding at a
specific time (see
further below).

integer none 1: Activate
0: Deactivate

pedestrian_popul
ation

To choose the
maximum number
of pedestrians in
the area at the
start of flooding.

integer none Any positive
value

hero_percentage To define the
percentage of
emergency
responders (of
total population)
involved in the
intervention case.

float none 0.01 (1%) to 1
(100%)

https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232

inflow_start_time
inflow_peak_time
inflow_end_time

To define the
inflow condition in
terms of time
according to the
hydrograph
shown in Figure
5a (Shirvani et al.
2020).

float seco
nd

Any positive
value

inflow_initial_disc
harge
inflow_peak_disch
arge
inflow_end_disch
arge

To define the
inflow discharge
according to the
hydrograph
shown in Figure
5a (Shirvani et al.
2020).

float m3/s Any positive
value

evacuation_start_t
ime

To specify the
time of early
evacuation
(evacuation_on sh
ould already be
activated).

float seco
nd

Any positive
value

sandbagging_star
t_time
sandbagging_end
_time

To specify the
starting and
ending times for
the intervention
case
(sandbagging_on
should already be
activated).

float seco
nd

Any positive
value

pickup_duration
drop_duration

To specify how
long each
emergency
responder may
spend on picking
up and dropping a
sandbag.

float seco
nd

Any positive
value

sandbag_length
sandbag_height
sandbag_width

To specify the
dimensions of
each sandbag.

float mete
r

Any positive
value

https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232

pickup_point To specify the
location of the
sandbag storage,
e.g. truck
(see Figure 4b in
Shirvani et al.
2020).

integer none 1 to 10

drop_point To specify the
location where
emergency
responders are
asked to drop the
sandbags
(see Figure 4b in
Shirvani et al.
2020).

integer none 1 to 10

Output Data
The output data consists of a set of CSVs. A CSV will be produced for each timestep in the
simulation which will list the current state of the 3D space at that point in the timestep which
includes the contents of each cell (flooded, not flooded, how many people in it, is it
sandbagged etc…). There is also an overall CSV outputted at the end of the simulation to
give some overall information about the impact of the flood event.

Pilot Scope

Objectives
The main aims of the pilot project were to:

• Containerise FlameGPU separately from the Flood People Simulator so that other

FlameGPU based models can be more easily ported onto DAFNI in future

• Containerise the Flood People Simulator using the FlameGPU base image produced in

the first step

• Write the model schema for the model indicating which parameters can be changed and

specifying minimums / maximums

• Write a wrapper around the FlameGPU code which takes in environment variables and

writes them to the appropriate location in the ‘map.xml’ file allowing DAFNI users to

easily change the parameters.

Challenges
Getting both FlameGPU and the Flood People Simulator dockerised was a fairly trivial

process. Both codebases were solid with good documentation and the owners of Flood

People Simulator were very responsive in dealing with any questions or problems we had.

One challenge was working with the C code. Up until now, we haven’t had any DAFNI

models which are coded entirely in C. We also don’t have any members of the team that are

experienced with C which meant that the model itself was quite difficult to debug. We ended

up spending a while in adding a lot of extra logging to the main files to figure out where

things were going wrong. This eventually led to me discovering a bug in the source code that

https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232
https://arxiv.org/abs/1908.05232

we then fed back to the developers. This bug was then fixed and we were able to progress in

getting the model uploaded onto DAFNI. This really highlighted the importance of being able

to see logging output from the models as they run and how much someone might struggle if

they didn’t have access to those logs.

Another challenge in this pilot was enabling GPUs to be selected as a resource in a model

definition. In the early stages of development, we were manually submitting jobs to the

DAFNI Kubernetes cluster and was able to configure the job to use GPUs manually in my

configuration file. When it came to actually running the job in Kubernetes, we had to do

some extra configuration to get the GPUs working in the Kubernetes nodes. In addition to

this, when running through the NIMS we had to add an additional parameter to the model

schema file to allow a model to be “GPU-enabled”.

Overall, the challenges in this pilot were relatively few. This is testament to the

documentation of the codebase which was extremely useful and all encompassing.

Outcomes
The outcome is that the model is now running on DAFNI and is configurable by the user in

the workflow creation part of the web application. There is a remaining piece of work to do to

allow users to upload their own 3D space XML file. At the moment, there is no way of

configuring this, so the flood event always runs on the same example 3D space file that is

included with the model. This is obviously a significant limitation, but it will be a very easy fix

once we have completed the “Select dataset for model” feature on DAFNI which is going to

be worked on in upcoming sprints.

Lessons Learned

 Trying to get the model to run without any debugging output highlighted the need for

technical logging being made available to users throughout the model upload and

workflow execution process. Without these logs they will have no hope of fixing models

when they go wrong.

 Learned a lot about GPUs being used on DAFNI including doing some stress testing to

see how Kubernetes handles an excess of GPU jobs. Also, all of the work to run GPU-

based models on DAFNI has now been done so this will make future GPU-based models

much easier to port onto DAFNI.

 Used this model as the first full test for uploading a complex model through the model

upload process. Also we followed the guide as if we were in the place of a first-time

DAFNI user. Learned that there are some gaps in the documentation around wrapping

the Flood-People simulator to use environment variables amongst other things.

