

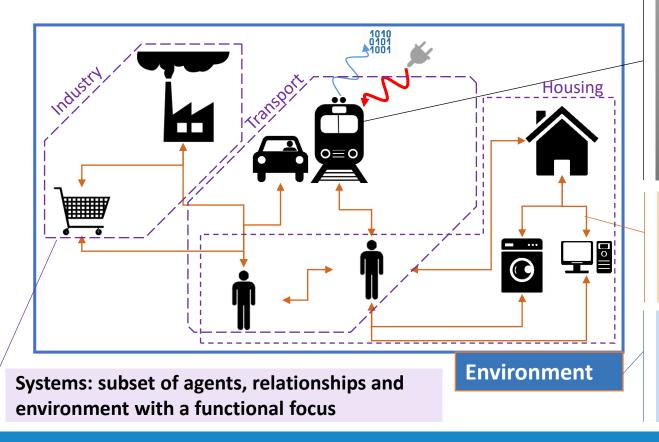
Large scale model for the microsimulation of energy and mobility demands as a function of individual activity-travel patterns

DAFNI – ICL Roadshow

Aruna Sivakumar

Urban Systems Lab, CTS, Imperial College London

Overall aim


To develop an agent based microsimulation implementation of an activity-based model of energy demand, such that

- Demand is indirectly derived from the need to participate in activities
- Demand is predicted at the level of the individual consumer to capture a wealth of heterogeneity (behavioural drives, lifestyle preferences, adoption patterns)
- Demand vectors are spatio-temporally disaggregate, and can be predicted strategically as well as tactically
- The strengths of emerging big data sources and behaviourally rich 'small data' are combined
- The model can support the analysis and development of more effective methods of decentralised control and incentivisation

Example use cases

- New business models related to consumption e.g. peer to peer trading
- Various emerging trends in mobility and activity participation such as virtual activities (online shopping, remote working etc undertaken at home, during travel and in public spaces)
- Emerging modes of transport, such as ride hailing, shared cars, shared bikes/e-bikes and e-scooters
- Electric vehicles, V2G and V2X
- Dematerialisation of products, the rise of internet shopping and related logistics

Conceptual framework

Agents: people, things, entities

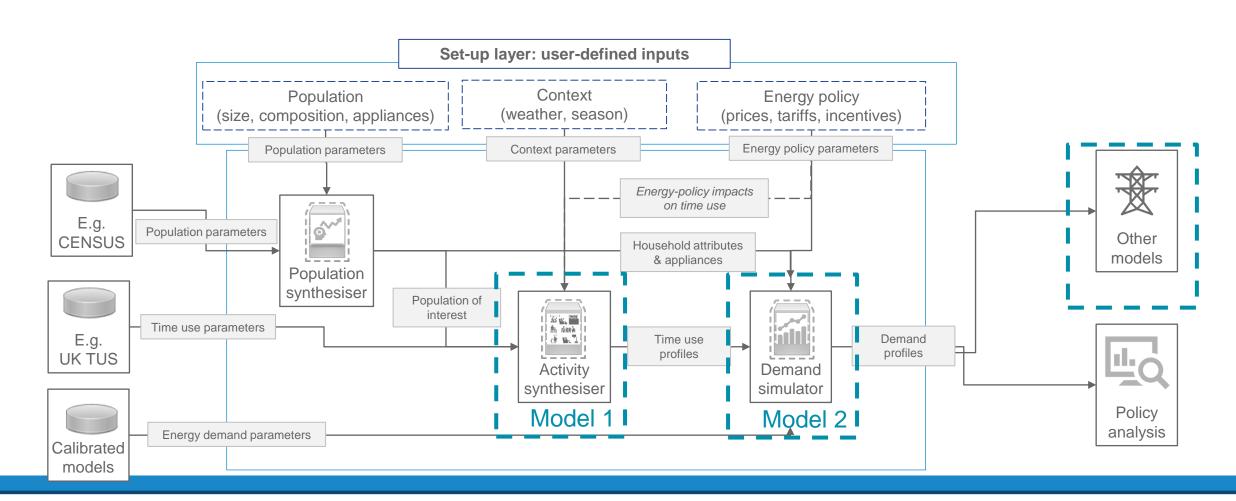
Undertake activities, interact with other agents (are related to other agents), are affected by the environment.

Characterised by attributes (properties)

Use *inputs* (incl. energy, transport)

Derived demand Produce data that reflect their activities and interactions Energy stakeholders interpreted as agents.

Relationships (interactions)


Describe how agents are related to each other, e.g. buying, selling, using, producing, etc.

Interactions are closely related to activities.

Environment: regulatory, natural, spatial (topography, urban layout), technological, societal

Taken as exogenous *given the time horizon of modelling*. Can be modified to analyse scenarios.

Activity-based energy demand simulator

Activity generation model

- Developing in-home and out-of-home activity generation models (individuals/households)
 - Random utility maximisation models
 - Calibrated using the 2015 UK Time Use Survey data
- Capturing trade-offs between virtual and physical activities as a function of
 - Transport system characteristics (travel times, costs, accessibility...)
 - Personal context (household structure, income, vehicle availability, work location, ICT use...)
 - Characteristics of the home (building attributes, appliances...)
 - Energy system characteristics (tariff, EV charging infrastructure etc)
 - Other contextual factors (seasonality, weather...)

In-home activity-based energy demand model

- Energy demand is closely linked to activities. Intensity of energy consumption can vary due to: -
 - Household attributes, e.g. size, composition
 - Season and time of day
 - Appliance ownership and use
 - Energy pricing
- Developing a methodology for characterisation of energy demand, by taking into account population attributes, activities and context (weather, energy policy)

Thank You!

Aruna Sivakumar <u>a.sivakumar@imperial.ac.uk</u>

IDLES: https://www.imperial.ac.uk/energy-futures-lab/idles/