Top Level Ontologies: CDBB/IMF

Digital Twins and Data Ontologies Event 2 December 2020

Chris Partridge

UK Research and Innovation

Department for Business, Energy & Industrial Strategy

The National Digital Twin: Key milestones

2018	Gemini Principles	a paper setting out the proposed principles to guide the national digital twin and the information management framework that will enable it
2018	Roadmap	a prioritised plan for five core streams responsible for the delivery of the information management framework
2020	Pathway towards an Information Management Framework: a 'Commons'	a 'Commons' for a digital built Britain and a high level summary. The approach to delivering a National Digital Twin for the United Kingdom
2020	A survey of Top-Level Ontologies A Survey of Industry Data Models and Reference Data Libraries	these form the foundation for the work described in 'The Pathway towards and Information Management Framework'. The survey papers identify the requirements and inform the ontological choices for a Foundation Data Model (FDM). The FDM, built upon a top-level ontology, is a key component of the IMF and a basis for ensuring consistent data across the National Digital Twin
2020	(forthcoming) TLO Recommendation	the choice of TLO for the FDM

The pathway towards an Information Management Framework

https://www.cdbb.cam.ac.uk/news/pathway-towards-IMF

The FDM is built upon a top-level ontology

- 1. Foundation Data Model (FDM) a high level definition of the structure and meaning of data to enable the consistent sharing of data across Digital Twins and the ecosystems they support
- 2. **Reference Data Library (RDL)** the particular set of classes and the properties we will want to use to describe our digital twins
- 3. Integration Architecture (IA) the protocols that will enable the managed sharing of data

The survey papers

https://www.cdbb.cam.ac.uk/news/publication-top-level-ontologies-andindustry-data-models

A survey of Top-Level Ontologies

• to inform the ontological choices for a Foundation Data Model

A Survey of Industry Data Models and Reference Data Libraries

• to identify requirements for, and provide input to, a Foundation Data Model

The survey papers are the first outputs from the FDM project

They will inform the development of an FDM which will be tested on CIH's Platform and is the starting point - a "seed" - for the National Digital Twin

UNIVERSITY OF

The publication of these surveys is a big step forward towards building a framework that enables effective information management across the built environment

A Survey of Top-Level Ontologies: A framework

Appendix E: Summary of Framework Assessment Matrix Results

			category	category vertical aspect										
			type	parent-arity tro			boundedness		stratification	formal ger	neration			
	31		relation	type-instance	super-sub- type	super-sub- type	type-instance			type-instance	whole-part			
	ontological		characteristic				downwards	fixed finite levels	number of fixed levels		fusion	compler		
	choices		choice	single or unconstrained	single or unconstrained	yes or no	bounded or unbounded	fixed or not-fixed	[a number]	stratified or unstratified	yes or no	yes or n		
	CHOICES		BFO	unconstrained	single	yes	bounded	fixed	2	stratified	no	no		
			BORO	unconstrained	unconstrained	yes	bounded	not-fixed	not. applicable	unstratified	yes	yes		
			YAMATO	not assessed	single	yes	bounded	fixed	2	stratified	yes	yes		
			HQDM	unconstrained	unconstrained	yes	bounded	not-fixed	not applicable	unstratified	yes	yes		
			IDEAS	unconstrained	unconstrained	yes	bounded	not-fixed	not applicable	unstratified	yes	yes		
			ISO 15926-2	unconstrained	unconstrained	yes	bounded	not-fixed	not applicable	unstratified	yes	yes		
			UFO	unconstrained	unconstrained	yes	bounded	not-fixed	not applicable	stratified	no	no		
A survey of Top-Level Ontologies	37 top	-	GFO	unconstrained	single	yes	bounded	not-fixed	not applicable	unstratified	yes	yes		
Foundation Data Model	ontologies		KR Ontology	not yet assessed	unconstrained	yes	not yet	not	not assessed	not assessed	not	not asse		
Version 1			DOLCE	unconstrained	single	yes								
	snortlisted		ConML+CHARM	unconstrained	single	yes	Th	e on	toloc	ical d	choi	ce		
	and		CIDOC (ISO 21127-2014)	unconstrained	unconstrained	yes	sh	ape	the	, archi	lect	ure		
	assessed							of	the c	ontola	nav			

To inform the ontological choices for a Foundation Data Model

Making an ontological assessment

Two useful tools – among many

relation characteristic type choice ontologically committed -not setcommitment leve -not setsubject --not setcategorical -not settype-instance --not setparent-arity super-sub-type -not set transitivity super-sub-type -not setdownwards -not setboundedness type-instance fixed finite levels number of fixed levels not set stratification type-instance fusion -not setwhole-part complement -not setformal generation type-instance fusion -not setfusion -not setsuper-sub-typ complement -not settype-instance --not setrelation class-ness super-sub-type -not set spacetime -not set locations -not set norizontal aspect properties -not set--not setendurants immateria -not setmereology -not setnterpenetration -not setmaterialism -not set possibilia -not setcriteria of identity -not set time -not setindexicals: here and now -not set higher arit -not set

Ontological Framework Assessment Evidence-based Conceptual Prototyping

Mining the ontological requirements for a domain

For an example based upon UNICLASS see:

https://www.academia.edu/44210409 https://www.academia.edu/44326217

or

https://borosolutions.net/multi-level-typesuniclass-multi-2020

Both can be applied to any data schema (or data)

